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Abstract
Equilibrium solutions for a sample of ferroelectric smectic C (SmC∗) liquid
crystal in the ‘bookshelf’ geometry under the influence of a tilted electric field
will be presented. A linear stability criterion is identified and used to confirm
stability for typical materials possessing either positive or negative dielectric
anisotropy. The theoretical response times for perturbations to the equilibrium
solutions are calculated numerically and found to be consistent with estimates
for response times in ferroelectric smectic C liquid crystals reported elsewhere
in the literature for non-tilted fields.

PACS numbers: 61.30.−v, 61.30.Dk

1. Introduction

Smectic liquid crystals are anisotropic fluids consisting of rod-like molecules which are
arranged in equidistant layers. These molecules have a common preferred local average
direction within each layer and the average orientation of their long molecular axes is described
by the unit vector n, usually called the director. In non-chiral smectic C liquid crystals (SmC)
the director is tilted relative to the layer normal a at an angle θ , called the smectic tilt angle
or smectic cone angle, as depicted in figure 1(a). The tilt angle θ is generally temperature
dependent; nevertheless, in this paper we shall assume isothermal conditions and suppose that
θ is a fixed constant angle. Under this assumption, it follows that n is constrained to rotate
around the surface of a fictitious cone as pictured in figure 1(b). It is an accepted practice
[1] to introduce the vector c as the unit orthogonal projection of n onto the smectic planes as
shown in figure 1(b), from which it is then seen that

n = a cos θ + c sin θ. (1.1)

Knowledge of a and c completely determines the alignment of the director n. Ferroelectric
smectic C liquid crystals (SmC∗) are chiral forms of SmC liquid crystals: in addition to the
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Figure 1. (a) A planar layered sample of SmC liquid crystal. The short bold lines represent the
alignment of the director n, which is always tilted at an angle θ to the layer normal a. (b) The vector
c represents the unit orthogonal projection of n onto the smectic planes. The angle φ is used to
describe the orientation of c within the xy-plane. In ferroelectric SmC∗ there is also a spontaneous
polarization vector P = P0b where b = a × c. In the isothermal situation θ is constant and in both
SmC and SmC∗ the director n is then constrained to rotate around the surface of a fictitious cone.

aforementioned properties of SmC they posses a spontaneous polarization vector P which is
normal to both a and n. It then proves convenient to introduce the vector b = a × c in order
to describe P by

P = P0b, P0 = |P|. (1.2)

In SmC∗ liquid crystals the spontaneous polarization P, and therefore the vector c, exhibits
an inherent rotation within the xy-plane as an observer travels along the z-axis in figure 1(b).
This generates the helical structure of these chiral materials. If the smectic layers are fixed in
parallel planes then the orientation angle φ of c measured relative to the x-axis enables a full
description of the orientation of the director n, by (1.1), and the spontaneous polarization P,
since it always lies in the xy-plane orthogonal to c. Following the convention of Lagerwall and
Dahl [2], P as defined in (1.2) is called positive. Negative polarization is also known to occur
in physical samples, in which case we can write P = −P0b, with P0 > 0. We shall assume
positive polarization below: the case for negative polarization can be considered analogously.
Further background details on SmC and SmC∗ liquid crystals may be found in [1, 3, 4].

It is well known that externally applied electric fields influence the orientation of n. It
is the aim of this paper to obtain equilibrium solutions for a sample of SmC∗ in the standard
‘bookshelf’ geometry when the director has been anchored at different orientations on each
boundary plate and an electric field is applied across the sample at an angle α to the normal
of the plates. For the case when the electric field is perpendicular to the plates, Maclennan
et al [5] considered the dynamics of the director in SmC∗ while Anderson and Stewart [6, 7]
obtained static equilibrium solutions and considered their stability. When the electric field
is tilted relative to the plane of the smectic layers then the structure of the equilibrium
configurations changes. Experimental results and some elementary dynamics were reported
by Abdulhalim et al [8, 9] when the smectic layers were tilted between boundary plates across
which an electric field was applied. In these papers a model dynamic equation was given and
this equation will be of the same form and structure as that to be discussed below. When the
field is tilted relative to the layers there are essentially three sinusoidal contributions to the
nonlinear terms appearing in the dynamic equation; when the tilt of the field is zero, there are
only two sinusoidal contributions. Some exact solutions are known for the dynamic equation
in the latter case and will be mentioned below, but no exact solutions are known in the former.
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In section 2 the dynamic theory and a mathematical description of the problem will be
presented. We shall obtain equilibrium solutions numerically in section 3 for non-zero tilted
electric fields when the elastic constants are set equal. The stability of these non-constant
static solutions will be investigated in section 4. For a typical SmC∗ material we shall establish
stability via a quite general stability criterion in section 4.1, given by (4.14). This consequently
encourages a search in section 4.2 for the explicit dynamic response to perturbations of these
equilibrium solutions. The characteristic response times for such perturbations in a typical
material, for various magnitudes of electric field, will be derived numerically via the Ritz
method for obtaining the eigenvalues of a regular Sturm–Liouville boundary value problem.
These theoretical response times for high magnitude fields, presented in figure 6, are within
the range of characteristic response times reported for SmC∗ liquid crystals when switching
phenomena are considered [3, 10]. Section 5 considers the problem when the elastic constants
are not equal; for brevity, attention is restricted to the case where the dielectric anisotropy
is positive. The effects of anisotropy in the elastic constants upon the equilibrium solutions,
and perturbations to them, are shown in figures 7 and 8. The paper closes in section 6 with a
discussion of the results.

2. Dynamic theory and description of the problem

The dynamic theory of Leslie et al [11] will be employed to obtain the governing static and
dynamic equations that will describe the orientation of the vector c within the smectic planes.
A brief summary of the parts of this theory that will be applicable will now be given before we
go on to discuss the geometrical set-up of the problem to be investigated and the consequent
dynamic equation for describing the reorientation of the vector c under the influence of a tilted
electric field.

2.1. Dynamic theory

The smectic layer normal a and the vector c introduced in figure 1 must satisfy the constraints

a · a = c · c = 1, a · c = 0. (2.1)

If the sample is assumed to have no dislocations, as will be supposed here, then the layer
normal a must additionally fulfil the requirement [12]

∇ × a = 0. (2.2)

The bulk elastic energy density (integrand) for SmC∗ liquid crystals may be written in Cartesian
component form as [4] (see also [13, 14] for alternative formulations)

welas = 1
2A21(ai,i)

2 + 1
2 (B2 − B3)(ci,i)

2 + 1
2 (B1 − B3)ci,j cj ci,kck + 1

2B3ci,j ci,j

+ 1
2 (A12 + A21 + 2A11 − B1 + B3)(ciai,j cj )

2

− (
A11 + A21 + 1

2B3
)
ai,i(cj aj,kck) + B13ci,j cj ci,kak + (C1 + C2)ci,i(cj aj,kck)

−C2ai,icj,j + 2A11δεipkapckcj,iaj − B3qεipkapckci,j aj , (2.3)

where repeated indexes are summed from 1 to 3 and a comma denotes partial differentiation
with respect to the variable it precedes. There are nine elastic constants and they are known
to obey the inequalities

A12, A21, B1, B2, B3 � 0, A12A21 − A2
11 � 0, (2.4)

B1B3 − B2
13 � 0, B2A12 − C2

1 � 0, B2A21 − C2
2 � 0. (2.5)
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A physical interpretation of these constants may be found elsewhere [4, 15]; it is worth
recording that the Ai constants relate to bending of the smectic layers, the Bi refer to
various distortions of the vector c and the Ci are coupling constants related to various layer
deformations that are linked with distortions of c. The constants B1 and B2 are particularly
relevant to the discussion below and are related to the reorientation of c within the smectic
planes. The parameter q > 0 is a wave number related to the chirality of the SmC∗ phase
while δ is generally accepted as being zero in undistorted planar layers of smectic [1, 14].

In SmC∗ liquid crystals there are contributions to the electric energy density given by
[1, 3, 4]

welec = −P · E − 1
2ε0εa(n · E)2, (2.6)

where E is the electric field, ε0 is the permittivity of free space and εa is the (unitless) dielectric
anisotropy, which may be positive or negative. The director prefers to align itself parallel to
the field when εa > 0 and perpendicular to the field when εa < 0. The first contribution on
the right-hand side of (2.6) is minimized when P (in the direction of b) is parallel to E. It is
well known that the spontaneous polarization has a dominant influence for electric fields of
small magnitude and that the dielectric contribution dominates at high magnitude fields.

The total energy density w for SmC∗ is the sum of the elastic and electric energies, which
leads to

w = welas + welec, (2.7)

with the total energy being given by

W =
∫

V

w dV, (2.8)

where V is the volume of the sample.
The dynamic equations when flow is neglected, as it will be in this paper, are generally

split into two coupled systems of ‘a-equations’ and ‘c-equations’. In the problem to be
described below in section 2.2 we shall consider a sample of SmC∗ which has a fixed system
of parallel planar aligned smectic layers. In these circumstances the layer normal a is a
constant vector and therefore the a-equations need not concern us here in this brief analysis.
Only the c-equations will be of relevance under these assumptions and they may be written as
[4, 11]

�c
i + g̃c

i + µai + τci = 0, i = 1, 2, 3, (2.9)

where,

�c
i =

(
∂w

∂ci,j

)
,j

− ∂w

∂ci

, (2.10)

and

g̃c
i = −2λ5

∂ci

∂t
. (2.11)

The parameter λ5 is known to be a positive viscosity coefficient related to the rotation of the
director n around the fictitious cone illustrated in figure 1(b) [4, 11]. The scalar functions
µ and τ are Lagrange multipliers which arise from the constraints that a and c are mutually
orthogonal unit vectors. These multipliers may be found by taking the scalar product of
equations (2.9) with a and c. The dynamic equations are then given by solutions to (2.9) once
the Lagrange multipliers have been found or eliminated. The static equilibrium equations are
provided by time-independent solutions to (2.9).
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Figure 2. (a) The ‘bookshelf’ geometry for SmC∗ liquid crystals. The parallel smectic layers are
perpendicular to the boundary plates at x = 0 and x = d. For simplicity, the director is fixed at the
boundaries so that the vector c is parallel to the plates at both boundaries but in opposing directions.
The possible orientation of c across the sample is shown on the right-hand side. (b) A schematic
representation of n across the sample. (c) The orientation angle φ of c within the xy-plane. (d ) The
coordinate system showing the electric field E being applied across the boundary plates at an angle
α to the plane of the smectic layers.

2.2. Description of the problem

Consider a sample of planar layers of SmC∗ liquid crystal in the bookshelf geometry having
depth d as illustrated in figure 2(a). An electric field E is applied across the plates at an angle
α to the plane of the smectic layers as shown in figure 2(d). The vector c is described by the
phase angle φ(x, t) as depicted in figure 2(c). The director is fixed at the top and bottom plates
so that φ(0, t) = −π/2 and φ(d, t) = π/2, t � 0; this gives a total reorientation through π

radians as φ varies between the plates. The orientation of c is pictured schematically on the
right-hand side of figure 2(a), showing the orientation of n around the fictitious cone as shown
in figure 2(b). Under this geometry and the description in figure 1(b) we can write

a = (0, 0, 1), (2.12)

c = (cos φ(x, t), sin φ(x, t), 0), (2.13)

b = (−sin φ(x, t), cos φ(x, t), 0), (2.14)

P = P0b, (2.15)

E = E(cos α, 0, sin α), (2.16)

where the dependence of the orientation angle φ upon x and t only is supposed and E is the
magnitude of the electric field. A detailed analysis of the electric energy welec in (2.6) for
the case considered in equations (2.12) to (2.16) has been discussed recently by Stewart and
Momoniat [16].

We must first eliminate or identify the Lagrange multipliers. Taking the scalar product
of equations (2.9) with the forms for a and c given by equations (2.12) and (2.13) gives,
respectively,

µ = −�c
3, τ = −�c

i ci, (2.17)

upon observing that g̃c
i ci and g̃c

i ai are both identically zero because c · c = 1 and a is a
constant vector. The third of the c-equations (i = 3) in (2.9) is automatically satisfied for
these Lagrange multipliers, and therefore the remaining c-equations may be written as

�c
1 + g̃c

1 + τ cos φ = 0, (2.18)
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�c
2 + g̃c

2 + τ sin φ = 0. (2.19)

Multiplying (2.18) by sin φ and (2.19) by cos φ and subtracting the resulting equations then
eliminates τ and yields the governing dynamic equation

�c
1 sin φ − �c

2 cos φ + g̃c
1 sin φ − g̃c

2 cos φ = 0. (2.20)

We do not require to calculate �c
3 for our purposes. The quantities g̃c

1, g̃
c
2,�

c
1 and �c

2 can be
calculated explicitly from equations (1.1), (2.3), (2.6), (2.7) and (2.10) to (2.16) to find, after
some straightforward manipulations,

g̃c
1 = 2λ5 sin φ

∂φ

∂t
, (2.21)

g̃c
2 = −2λ5 cos φ

∂φ

∂t
, (2.22)

�c
1 = −B2

[
cos φ

(
∂φ

∂x

)2

+ sin φ
∂2φ

∂x2

]

+ εaε0E
2 sin θ cos α (sin α cos θ + cos α sin θ cos φ) , (2.23)

�c
2 = −B1

[
sin φ

(
∂φ

∂x

)2

− cos φ
∂2φ

∂x2

]
− P0E cos α, (2.24)

where θ is the constant smectic tilt angle. Inserting these results into (2.20) finally reveals the
governing dynamic equation

2λ5
∂φ

∂t
= [B1 cos2 φ + B2 sin2 φ]

∂2φ

∂x2
+ (B2 − B1)

(
∂φ

∂x

)2

sin φ cos φ − P0E cos α cos φ

− ε0εaE
2 cos α sin α cos θ sin θ sin φ − ε0εaE

2 cos2α sin2θ sin φ cos φ. (2.25)

Note that the wave number q does not enter the equilibrium equations; it does, nevertheless,
affect the value of the total energy W .

2.2.1. One-constant approximation. A qualitative analysis of the dynamic equation (2.25)
is made more tractable by making the one-constant approximation B1 = B2 ≡ B. In this case
the dynamic equation for φ(x, t) reduces to

2λ5
∂φ

∂t
= B

∂2φ

∂x2
− P0E cos α cos φ − ε0εaE

2 cos α sin α cos θ sin θ sin φ

− ε0εaE
2 cos2α sin2θ sin φ cos φ. (2.26)

The time-independent equilibrium solutions φ(x) satisfy the equation

B
∂2φ

∂x2
= P0E cos α cos φ + ε0εaE

2 cos α sin α cos θ sin θ sin φ

+ ε0εaE
2 cos2α sin2θ sin φ cos φ. (2.27)

We shall be presenting solutions to the equilibrium equation (2.27) in section 3 and
investigating their stability in section 4 by means of the dynamic equation (2.26), where
φ satisfies the strong anchoring boundary conditions

φ(0, t) = −π

2
, φ(d, t) = π

2
, t � 0. (2.28)

These conditions reflect a net change in reorientation of the vector c at the boundaries of π

radians as φ varies between the boundary plates, as shown in figure 2. Different boundary
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conditions for φ can be accommodated by the procedures outlined below: the above boundary
conditions were chosen in order to enable qualitative observations to be made by identifying
simple constant equilibrium solutions that φ may attempt to achieve in the bulk of the sample.

Guided by the results obtained from (2.26) and (2.27), equation (2.25) for the case of
different elastic constants will be investigated in section 5 where it will be shown that the effect
upon equilibrium solutions due to anisotropy in the elastic constants is more pronounced in
low magnitude field regimes.

3. Solutions for the one-constant approximation

Numerical solutions to the static equilibrium equation (2.27) for the bookshelf geometry
problem described via figure 2 in section 2 will now be presented. It is convenient to assume
unit lengths in the y and z directions and to normalize the sample depth in the x direction by
setting X = x/d and then, to ease notation, replace X by x with 0 � x � 1; the notational
context should be clear and ought not to lead to confusion. The equilibrium equation (2.27)
may then be written as

d2φ

dx2
= aE2 sin φ cos φ + bE cos φ + cE2 sin φ, (3.1)

where

a = ε0εad
2B−1 cos2α sin2 θ, (3.2)

b = P0d
2B−1 cos α, (3.3)

c = ε0εad
2B−1 cos α sin α cos θ sin θ, (3.4)

with boundary conditions

φ(0) = −π

2
, φ(1) = π

2
, (3.5)

which correspond to a ‘π -twist’ cell. Observe that the governing equation (3.1) is invariant to
the simultaneous changes in sign of E and φ while the boundary conditions are not invariant: a
change in the sign of E will alter the solutions, as will be seen in the figures that are presented
below for both positive and negative fields. Solutions for both signs of E are considered
because a change in sign is of importance when considering the switching of liquid crystal
cells. Nevertheless, it is seen from (3.1) and (3.5) that the solutions obey the symmetry
condition φ(x) �→ −φ(1 − x) as the sign of E is changed. This observation means that when
examining stability in sections 4 and 5 we can can restrict attention to the case for E > 0
because the situation for E < 0 is analogously found via symmetry: the stability criterion
developed in section 4.1 will be equally valid for either sign of E.

One reason for selecting the boundary conditions (3.5) is that if α = 0 then φ = ±π/2
are the natural constant equilibrium solutions to (3.1); they are also the naturally preferred
constant equilibria when |E| � 1. Of course, these constant solutions cannot match the given
boundary conditions, but they can be considered as possible preferential states for the system in
the bulk of the sample away from the boundaries. Further, when α = 0, one of these constant
equilibria becomes preferred to the other as the magnitude of the electric field increases. It
is this ‘competition’ between possible constant equilibria and boundary conditions that will
influence the structure of the non-constant equilibrium solutions. Note also that for |E| � 1
the dominating terms in equation (3.1) are those with the coefficients a and c and that φ = 0
and φ = ±π then become possible candidates as constant equilibrium solutions to which φ
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may be attracted in the bulk of the sample. It is expected that φ will attempt to achieve a
compromise between the boundary conditions and the states ±π for large magnitude fields
when α � 0.

Qualitatively, the results will be similar for various sample depths d, and therefore we
proceed by fixing typical values for the physical parameters and only allow the electric field
to change in order to see its influence upon φ as it varies across the sample. For typical values
we set [3, 4]

B = 5 × 10−12 N, P0 = 80 µC m−2, θ = 22◦, α = 5◦, d = 10 µm,

(3.6)

with ε0 = 8.854 × 10−12 F m−1 being the usual value for the permittivity of free space. It is
known that the dielectric anisotropy of many liquid crystals lies approximately in the range
|εa| � 10 [17], with many SmC∗ liquid crystals being known to possess negative dielectric
anisotropy εa around −3 to −0.5. We shall select εa = −2 and εa = 2 as representative values
in the following examples.

Case (i) εa = 2. We begin with the case for positive dielectric anisotropy εa = 2. Numerical
solutions to equation (3.1) with the boundary conditions (3.5) and physical parameters (3.6)
have been obtained using the dsolve routine contained in the software package Maple 8 [18].
The spontaneous polarization contribution is linear in E while the dielectric contributions are
quadratic and therefore solutions have been derived for both positive and negative electric
fields. Figure 3(a) shows the solution φ(x), 0 � x � 1, for E > 0 as the field magnitude
increases and figure 3(b) shows the situation for E < 0. When there is no field there is a
linear solution for φ given by φ(x) = (2x − 1)π/2. As E increases above zero, it is seen in
figure 3(a) that φ initially has a tendency, in the bulk of the sample, to approach the constant
solution φ = −π/2, a possibility that was identified above for small magnitude fields. This
behaviour arises because the effect of the spontaneous polarization, characterized by the
contribution with coefficient b in equation (3.1), will be more influential for small magnitude
fields. However, as E increases further, the dielectric terms with coefficients a and c begin to
dominate and φ then attempts to approach a constant solution in the bulk that is a compromise
between the boundary states φ = ±π/2 and the constant state φ = 0, this latter state having
been identified earlier as being close to a possible preferred equilibrium in the bulk for high
magnitude fields.

The situation for E < 0 is shown in figure 3(b). Initially, φ attempts to approach π/2 as
|E| increases above zero. In an analogous way to that discussed above for E > 0, when |E|
increases further φ again attempts to approach a constant solution in the bulk of the sample
that is a compromise between the boundary states ±π/2 and the constant state φ = 0.

Case (ii) εa = −2. When the dielectric anisotropy εa = −2 the numerical solutions for φ(x)

have similar behaviour to those when εa = 2, in the sense that for low magnitude fields φ tries
to approach the states φ = −π/2 when E > 0 and φ = π/2 when E < 0. Such solutions
are shown in figure 4. However, the profiles in figure 4 differ from those in figure 3 when
|E| increases such that the dielectric terms dominate the behaviour. For large E > 0 the
solution φ attempts to achieve a compromised constant equilibrium state in the bulk that is
less than −π/2, as can be seen in figure 4(a): the compromised state lies between −π/2 and
the preferred bulk equilibrium state −π , identified in the first paragraph of this section. This
is in contrast to the case for εa = 2 where φ attempts to reach a constant equilibrium state
in the bulk that is between −π/2 and π/2 for high magnitude fields. An analogous situation
occurs for E < 0, as is clear from figure 4(b), where φ seeks a constant equilibrium solution
that lies between π/2 and the preferred bulk equilibrium π when |E| is large.



Stability in SmC∗ 1861

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

or
ie

nt
at

io
in

an
gl

e
φ

(r
ad

)

sample depth x

sample depth x

E ( X 106 V m-1)
0.001
0.01
0.05
0.1
0.5
1
5
10
20

E > 0 , εa = 2

(a)

(b)

or
ie

nt
at

io
in

an
gl

e
φ

(r
ad

)

E ( X 106 V m-1)
-0.001
-0.01
-0.05
-0.1
-0.5
-1
-5
-10
-20E < 0 , εa = 2

Figure 3. Numerical solutions to equation (3.1) with boundary conditions (3.5) for the parameters
(3.6) when εa = 2. (a) E > 0. (b) E < 0.

Remark. In both cases (i) and (ii) the constant states that the equilibrium solutions φ(x)

attempt to reach in the bulk can be approximated numerically. For example they can be
computed for any tilted field angle α for each value of E by setting the right-hand side of
equation (3.1) to zero and solving for its roots in φ. In all cases, irrespective of the value of α,
the dominant behaviour is dictated by the spontaneous polarization at low magnitude electric
fields and the dielectric contributions at high magnitude fields.

4. Stability in the one-constant approximation

The stability of the equilibrium solutions derived above will now be investigated. This is
accomplished by considering a small perturbation w to these solutions where w vanishes at
the boundaries and depends on space and time. If we introduce the rescaled time T by

T = t

τd

, where τd = 2
λ5d

2

B
, (4.1)

then, recalling that we have normalized x at the beginning of section 3, the dynamic
equation (2.26) can be written, in the notation of equations (3.1) to (3.4), as

∂φ

∂T
= ∂2φ

∂x2
− aE2 sin φ cos φ − bE cos φ − cE2 sin φ. (4.2)
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Figure 4. Numerical solutions to equation (3.1) with boundary conditions (3.5) for the parameters
(3.6) when εa = −2. (a) E > 0. (b) E < 0.

Let φ(x) denote any equilibrium solution to equation (3.1) and consider

φ(x, T ) = φ(x) + w(x, T ), |w| � 1. (4.3)

Substituting this form for φ(x, T ) into (4.2) and expanding the equation to first order of
magnitude in w leads to the governing dynamic equation for the perturbation w to φ. Recalling
that φ(x) must fulfil (3.1), we find that the relevant dynamic equation which governs the linear
stability of our problem is given by

∂w

∂T
= ∂2w

∂x2
− [aE2 cos(2φ) − bE sin φ + cE2 cos φ]w. (4.4)

Now suppose

w(x, T ) = e−λT v(x), v(0) = v(1) = 0. (4.5)

If it can be shown that λ > 0 then we can conclude that w(x, T ) → 0 as T → ∞
so that perturbations decay to zero, which indicates that the equilibrium solution φ(x) is
asymptotically stable. Moreover, if we can determine the values λ for given electric field
values E, then we can establish more detailed stability results and find the characteristic
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response times for such perturbations. With this idea in mind, we proceed by inserting (4.5)
into (4.4) to yield the regular Sturm–Liouville boundary value problem

d2v

dx2
+ [λ − q(x)]v(x) = 0, v(0) = v(1) = 0, (4.6)

where

q(x) = aE2 cos(2φ(x)) − bE sin φ(x) + cE2 cos φ(x). (4.7)

Any function v(x) that is not identically zero and satisfies (4.6), including its boundary
conditions, is called an eigenfunction corresponding to the eigenvalue λ. It is well known
[19] that for a regular Sturm–Liouville problem there are infinitely many discrete eigenvalues
λ1, λ2, λ3, . . . , which can be ordered such that λ1 < λ2 < λ3 < . . . . It therefore follows
that if the least eigenvalue λ1 is positive then all the eigenvalues are positive and then all
perturbations will decay to zero on account of them being of the form stated in equation (4.5).
The question of stability then reduces to identifying whether or not the least eigenvalue λ1 is
positive.

It is also known [19] that the positivity of the eigenvalues of a regular Sturm–Liouville
problem (4.6) is closely related to the behaviour of the function q(x). For example, if q(x)

is continuous and strictly positive then the eigenvalues are strictly positive. However, in the
problem considered here, the equilibrium solutions φ(x) satisfy φ(0) = −π/2 and φ(1) = π/2
which force, via (4.7),

q(0) = −aE2 + bE, q(1) = −aE2 − bE, (4.8)

and so, in general, q(x) cannot always be strictly positive on the interval [0, 1]. There are a
number ways of overcoming this problem in dealing with the sign of q. One key method is to
formulate the problem in an integral form and employ the Hardy inequality to ensure positivity
of λ, as will be seen in section 4.1 below. A variant of this inequality was used in [7] for a
case that was mathematically equivalent to setting α = 0 (equivalent to setting c = 0), but it
could only be used after certain limitations on the magnitude of electric field were imposed.
We shall remove the restrictions on both α and E by using a particularly appropriate version
of the Hardy inequality.

4.1. A stability criterion

It is possible to multiply the differential equation in (4.6) by v and integrate with respect to x
over the interval [0, 1]. Applying the boundary conditions on v after an obvious integration
by parts on the term that involves the second derivative then leads to the relation∫ 1

0

[(
dv

dx

)2

+ q(x)v(x)2

]
dx = λ

∫ 1

0
v2(x) dx, (4.9)

a form that is familiar for regular Sturm–Liouville problems [19]. Clearly, if we define

I (v) ≡
∫ 1

0

[(
dv

dx

)2

+ q(x)v(x)2

]
dx (4.10)

then it is seen from (4.9) that λ � 0 if we can establish that I (v) � 0 whenever v is not
identically the zero function. Strict positivity of I (v) will then show that λ > 0, which
indicates that the perturbation is asymptotically stable. The positivity of I (v) cannot be
determined in a trivial way since q(x) can take negative and positive values. This leads us to
a discussion of the Hardy inequality.
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For any smooth function v on the interval [0, 1] such that dv/dx ∈ L2(0, 1) and
v(0) = v(1) = 0, one variant of the Hardy inequality states that (cf [20, p 105])∫ 1

0

(
dv

dx

)2

dx � 1

4

∫ 1

0

v2(x)

m2(x)
dx, (4.11)

where

m(x) = min{x, 1 − x}, 0 < x < 1. (4.12)

Under such assumptions on the function v, this inequality can be applied to I (v) to find that

I (v) � 1

4

∫ 1

0

1

m2(x)
[1 + 4m2(x)q(x)]v2(x) dx. (4.13)

Therefore, I (v), and consequently λ, will be non-negative provided

r(x) ≡ 1 + 4m2(x)q(x) � 0, for all 0 � x � 1. (4.14)

Perturbations will be stable if the criterion in equation (4.14) is satisfied. Moreover, provided v

is an eigenfunction (and is therefore not identically zero), perturbations will be asymptotically
stable if the inequality in (4.14) is strict, i.e. r(x) > 0 for all 0 < x < 1. Thus the
positivity of r(x), which only involves knowledge of q(x) (which is itself based upon the
known equilibrium solution φ(x)), provides a stability criterion for perturbations.

The numerical solutions displayed in figures 3 and 4 can be inserted into the criterion
(4.14) to determine the positivity of r(x). The results are shown in figure 5 for εa = 2
and εa = −2 for E > 0; analogous graphs for E < 0 may be obtained via the symmetry
condition mentioned just after equation (3.5). It is seen that all of the calculated equilibrium
solutions are asymptotically stable because r(x) > 0 in all cases. Although these results
are for the typical physical parameters stated at equation (3.6), general equilibrium solutions
will produce qualitatively similar plots and results. These results greatly extend the previous
results obtained when the tilt of the electric field was set to zero, i.e. α = 0 (c = 0) [7].

Remark. It is apparent from figure 4 that dφ/dx is in general not single signed and can be
zero at some point lying strictly between x = 0 and x = 1, for example, at high magnitude
fields. If, however, the derivative of φ were non-zero and single signed on the closed interval
[0, 1] then the non-negativity of the eigenvalues would follow analytically by an argument
similar to that contained in [21, section IIIA].

4.2. Eigenvalues and response times

We now return to equation (4.9) to determine the first (least) eigenvalue λ1. It is known from
the results presented in figure 5 that the eigenvalues must all be strictly positive. The dominant
behaviour of the decaying perturbation is controlled by the magnitude of λ1, as dictated by
the form given in equation (4.5). The first eigenvalue λ1 and its corresponding eigenfunction
will be determined numerically by the standard Ritz method [22, pp 105–205] applied to
equation (4.9) which, of course, is simply a reformulation of the original Sturm–Liouville
problem in (4.6). Knowledge of λ1 will then enable an estimate for the response time of
perturbations to the equilibrium solutions.

The first eigenvalue λ1 is known to be the minimum possible value of I (v) when we seek
a normalized function v that satisfies∫ 1

0
v2(x) dx = 1. (4.15)
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Figure 5. The positivity of the stability criterion r(x) (defined by (4.14)) for E > 0 when
(a) εa = 2 and (b) εa = −2 for the solutions displayed in figures 3(a) and 4(a). The solutions are
asymptotically stable in all cases. Analogous graphs showing stability can be found for the case
E < 0 via the symmetry condition mentioned after (3.5).

It is also well known [22] that the function v which delivers this minimum value λ1 is
the normalized eigenfunction corresponding to the eigenvalue λ1 for the Sturm–Liouville
problem given in form (4.9). The Ritz method allows us to approximate λ1 and v to any
required accuracy. The first step in this procedure is to select a suitable complete sequence
of orthogonal functions. For our purposes it is sufficient to choose the complete sequence of
functions {φk(x)}, k = 1, 2, 3, . . . , defined by

φk(x) = sin(kπx), k = 1, 2, 3, . . . (4.16)

which satisfy the orthogonality condition∫ 1

0
sin(kπx) sin(mπx) dx = 0, k �= m. (4.17)
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The second step is to set

vn(x) =
n∑

k=1

αkφk(x), n = 1, 2, 3, . . . , (4.18)

where αk, k = 1, 2, 3, . . . , n, are constants and, for a given fixed value of n, consider the
minimization of I (vn), which is now a function of the n variables αk , with respect to the αk

subject to the constraint (4.15), which becomes∫ 1

0
v2

n(x) dx = 1

2

n∑
k=1

α2
k = 1. (4.19)

Note also that I (vn) is actually a quadratic form in αk, k = 1, 2, . . . , n, so that if we set
α = (α1, α2, . . . , αn) then we can write

I (vn) = αT Aα, (4.20)

where A is the unique symmetric matrix for the quadratic form. The minimization is
accomplished via the Lagrange multiplier method by minimizing the function J defined
by

J (α1, α2, . . . , αn, µ) = I (vn) − µ

(
1

2

n∑
k=1

α2
k − 1

)
, (4.21)

where the constant µ is a Lagrange multiplier. This is a real-valued function of the n + 1
unknowns α1, α2, . . . , αn and µ. Differentiating J with respect to αk in order to minimize
it gives n equations to be satisfied in µ and the unknown components of α, namely,
Aα = (µ/2)α: these n equations combined with the constraint (4.19) (which guarantees
that α �= 0) give n + 1 equations in the n + 1 unknowns: moreover, it shows that α is an
eigenvector of the matrix A corresponding to its eigenvalue µ/2. Solving these simultaneous
equations gives values for the αk and the Lagrange multiplier µ, which then yields the possible
functions vn via (4.18): the values of these multipliers must coincide with twice the eigenvalues
µ/2 of A. The minimum value of I (vn) over functions of form (4.18) is equal to the lowest
valued possibility for µ: this is because, by (4.19) and (4.20), the consequent solutions for α
show that

I (vn) = αT Aα = µ

2
α · α = µ. (4.22)

Thus, since I (vn) is a quadratic form, it follows, from the theory of minimization of a quadratic
form subject to the normalization constraint (4.19), that the minimum value of I (vn) is actually
equal to the lowest valued Lagrange multiplier, which, in this instance, is twice the lowest
eigenvalue of A (for a more detailed discussion on this topic see [23]). We can choose to label
this value as µn so that I (vn) = µn where the coefficients appearing in vn are the components
of the eigenvector α which is connected with the Lagrange multiplier µn (through the least
eigenvalue µn/2 of A). It can be shown [22] that if this procedure is repeated for each
n = 1, 2, 3, . . . , then the sequence of numbers {µn} is decreasing and

µn → λ1 and vn(x) → v(x) as n → ∞, (4.23)

where λ1 and v are the first eigenvalue and its corresponding normalized eigenfunction,
respectively, that we are seeking as solutions to the Sturm–Liouville problem (4.9). The
constants µn and functions vn act as approximations to λ1 and v, respectively, for sufficiently
large n.

The above procedure for solving the n + 1 equations mentioned above can be carried
out numerically for q(x) and I (v) as defined above at equations (4.7) and (4.10) for the data
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Figure 6. (a) The first eigenvalue λ1 for perturbations calculated numerically by the Ritz method
as outlined in the text. These values have been derived using the solutions obtained in figures 3
and 4, which assumed the one-constant approximation for the elastic constants and employed the
data (3.6). The symbols represent actual values that have been calculated at given electric field
magnitudes. (b) The perturbation response times tr defined in equation (4.24) for 2λ5 = 0.05 Pa s
with the data given by (3.6). In this particular instance tr = 1/λ1 where λ1 is given in (a).

obtained to produce the equilibrium solutions shown in figures 3 and 4. Some numerical
results are shown in figure 6(a), where it is seen that λ1 increases as |E| increases for either
sign of εa . The response times tr (in seconds) of the perturbations may be defined in the usual
way [4] via (4.1) and (4.5) by setting λ = λ1 to find

tr ≡
(

λ1
T

t

)−1

= τd

λ1
. (4.24)

In addition to the particular parameters (3.6) used throughout this paper we may take
2λ5 = 0.05 Pa s as a typical value for the viscosity [3, p 176], [4]. It then follows from (4.24)
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that the response times are simply given by tr = 1/λ1. These response times for the
perturbations are shown in figure 6(b) for the data displayed in figure 6(a).

5. Anisotropy in the elastic constants

The results presented in sections 3 and 4 were obtained under the assumption that B1 = B2 ≡
B. The analysis can essentially be repeated when B1 �= B2 by examining equation (2.25). To
simplify matters, attention will be restricted to cases where the dielectric anisotropy and the
electric field are positive: we choose to set εa = 2, take the electric field values 104, 106 and
107 V m−1 and adopt the material parameters listed in equation (3.6) in order to focus upon the
qualitative features. Negative values for εa and other electric field magnitudes can be handled
in a similar way. It proves convenient to set

k = B2

B1
, B1 = 5 × 10−12 N. (5.1)

The control parameter k > 0 is a measure of the anisotropy in the elastic constants and
will facilitate a discussion of the influence of differing elastic constants upon the equilibrium
solutions and their stability.

The time-independent equilibrium solutions to (2.25) satisfy

[1 + (k − 1) sin2 φ]
d2φ

dx2
+ (k − 1)

(
dφ

dx

)2

sin φ cos φ

= aE2 sin φ cos φ + bE cos φ + cE2 sin φ, (5.2)

where, as in section 3, we have normalized x and the constants a, b and c are as defined in
equations (3.2) to (3.4), except that B is replaced by B1. The boundary conditions (3.5) are
also retained. The solutions to (5.2) have been calculated numerically in Maple 8 and are
displayed in figure 7 for the electric field magnitudes mentioned in the previous paragraph.
The solutions for k = 1 coincide with those presented in figure 3(a) when the elastic constants
are equal. Compared to the solutions obtained when the elastic constants are equal, anisotropy
in the elastic constants has a more pronounced effect upon solutions at low field magnitudes.

The stability of these solutions can be investigated in the same way as described in
section 4. Nevertheless, for brevity, we shall not derive an analogue of the stability criterion
mentioned in section 4.1 but rather proceed directly to the calculation of eigenvalues and
response times of small perturbations to the equilibrium solutions. As before, φ(x) will
denote any equilibrium solution to (5.2) and we consider a perturbation w(x, T ) to it of the
form given via equations (4.3) and (4.5) where T is defined by (4.1) with B replaced by B1.
The dynamic equation for w can be derived from (2.25) and, in terms of the variables x and T,
is given by an equation analogous to (4.4) when terms are taken to first order of magnitude in
w, namely,

∂w

∂T
= [1 + (k − 1) sin2 φ]

d2w

dx2
+ (k − 1)

dφ

dx
sin(2φ)

dw

dx

+ (k − 1)




(
dφ

dx

)2

cos(2φ) +
d2φ

dx2
sin(2φ)


w

− [aE2 cos(2φ) − bE sin φ + cE2 cos φ]w, (5.3)

recalling that φ(x) is a solution to (5.2). Since w has the supposed form (4.5), equation (5.3)
and its boundary conditions can be written as

d2v

dx2
+ R(x)

dv

dx
+ {λρ(x) − Q(x)}v = 0, v(0) = v(1) = 0, (5.4)
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Figure 7. Numerical solutions to equation (5.2) with boundary conditions (3.5) for the parameters
(3.6) when εa = 2, B1 = 5 × 10−12 N and B2 = kB1 where k takes the values indicated in the
figures. (a) E = 104 V m −1, (b) E = 106 V m −1, (c) E = 107 V m −1.

where

ρ(x) = [1 + (k − 1) sin2 φ]−1, (5.5)

R(x) = ρ(x)(k − 1) sin(2φ)
dφ

dx
, (5.6)

Q(x) = ρ(x)


aE2 cos(2φ) − bE sin φ + cE2 cos φ

− (k − 1)




(
dφ

dx

)2

cos(2φ) +
d2φ

dx2
sin(2φ)





 . (5.7)

Note that 0 < ρ(x) < ∞ for all k > 0 and all φ. Equation (5.4) can be put into normal form
by introducing the transformation [24, p 394]

v = ṽ exp

{
−1

2

∫
R(x) dx

}
, (5.8)
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which leads to

d2ṽ

dx2
+ {λρ(x) − q(x)}ṽ = 0, ṽ(0) = ṽ(1) = 0, (5.9)

where q(x) is now defined by

q(x) = Q(x) +

{
1

4
R2 +

1

2

dR

dx

}
. (5.10)

Equation (5.9) can be multiplied by ṽ and integrated over 0 � x � 1, with the term involving
the second derivative in x integrated by parts, to find that, after applying the boundary conditions
on ṽ, ∫ 1

0

[(
dṽ

dx

)2

+ q(x)ṽ(x)2

]
dx = λ

∫ 1

0
ρ(x)ṽ2(x) dx, (5.11)

which is the form of a regular Sturm–Liouville problem with weight function ρ(x). This is
the analogue of equation (4.9) in section 4.1.

The integral I (ṽ) can be defined as in equation (4.10) with the obvious replacement of
v by ṽ and with q redefined by (5.10). The first eigenvalue of the above Sturm–Liouville
problem is, as before, known to be the minimum of I (ṽ) when the normalized eigenfunctions
satisfy ∫ 1

0
ρ(x)ṽ2(x) dx = 1. (5.12)

The Ritz method outlined in section 4.2 can be appropriately modified to cover this situation
and applied again here to the numerical solutions displayed in figure 7. This procedure results
in finding the first eigenvalues λ1 for these perturbation solutions. The response times tr
are defined by equation (4.24) with B replaced by B1 in the definition of τd in (4.1), which
leads to, in this instance, tr = 1/λ1, as has arisen in the previous section. The calculated
first eigenvalues and the corresponding response times for perturbations to the equilibrium
solutions in figure 7 are shown in figure 8. It is seen from figure 8 that the influence of
anisotropy in the elastic constants is most apparent at low magnitude electric fields, as is the
case for the equilibrium solutions themselves. Note also that the results presented in figure 8
at k = 1 coincide with those presented in figure 7.

6. Discussion

Static solutions, and features of their stability, for the c-director in bookshelf SmC∗ liquid
crystal under the influence of a tilted electric field in the geometry of figure 2 have been
determined numerically when the one-constant approximation B1 = B2 ≡ B has been made
in sections 3 and 4 and for unequal constants in section 5. The boundary conditions on the
c-director orientation angle φ are given by (2.28) and represent a net change of π radians in
the orientation of c between the boundary plates. Equilibrium solutions in the one-constant
approximation for various magnitudes of electric field and for different signs of the dielectric
anisotropy were found numerically and displayed in figures 3 and 4 for the typical physical
parameters (3.6). Similar solutions can be obtained for other boundary conditions: those stated
at (2.28) were selected because many ‘twisted cell’ geometries in liquid crystal displays employ
a relative change between the plates of π/2 or π . Stability of these equilibrium solutions
in the one-constant approximation was discussed in section 4 and a stability criterion for
perturbations to these solutions was established at equation (4.14). This allowed the stability
to be confirmed numerically in figure 5. These results encouraged a further investigation
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Figure 8. (a) The dependence of the first eigenvalue λ1 upon the (dimensionless) anisotropy k of
the elastic constants when εa = 2, calculated numerically for perturbations by the Ritz method
applied to equation (5.11) using solutions obtained in figure 7, as discussed in the text. (b) The
perturbation response times tr defined in equation (4.24) with B set equal to B1 in (5.1), d = 10 µm
and 2λ5 = 0.05 Pa s; tr = 1/λ1 for these data where λ1 is given in (a).

in section 4.2 into the asymptotic decay in time of small perturbations to the equilibrium
solutions via a Sturm–Liouville problem using the Ritz method. The first eigenvalue for the
perturbation v was calculated numerically for each of the equilibrium solutions obtained earlier:
the results appear in figure 6(a). This enabled the determination of the response times, shown in
figure 6(b), for such perturbations for a typical tilted field angle (α = 5◦), a feature that has
physical significance but was not considered in related earlier work [7]. The results will be
qualitatively similar for physical data other than those given by (3.6) and therefore they can
be generalized to a wider range of cases by analogous calculations.

It should be mentioned that the equation considered by Anderson and Stewart [7] may
be recovered from equation (3.1) by setting α = 0 and replacing φ by φ + π/2; although
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this transformation gives mathematically the same form of equation discussed in [7], different
boundary conditions were applied in a different geometry which forced a reorientation of c
in the z direction perpendicular to the smectic layers with the only elastic constant being B3,
which would take the rôle of B in section 3 above. The analysis presented here remains valid
at α = 0 (when the electric field is no longer tilted relative to the smectic layers) and so the
results extend those in [7].

The anisotropy k in the elastic constants was considered in section 5. Despite the
equilibrium equation being more complex, stability results for equilibrium solutions were
established by calculations similar to those carried out in sections 3 and 4. This was achieved
after a reformulation of the governing equation led to equation (5.11) and an application of
the Ritz method for the identification of the first eigenvalue for a perturbation to each solution.
For brevity, only the case for εa = 2 was discussed, with typical solutions being shown in
figure 7: k = 1 corresponds to the one-constant approximation B1 = B2 that was assumed
in sections 3 and 4. The dependence upon k of the corresponding eigenvalues and response
times for perturbations is shown in figure 8 for the indicated field magnitudes and material
parameters. Other choices of parameters will lead to similar qualitative results.

The results in this paper are for samples that are finite in the x direction. In such
circumstances the c-director orientation angle φ is different on each boundary and smooth
constant equilibrium solutions are therefore not possible. The applied electric field forces the
director to adjust and attempts to achieve its preferred optimum constant equilibrium state via a
competition between the boundary conditions and its idealized state in the bulk. Consequently,
the spatially dependent equilibrium solution biases itself towards its preferred alignment in as
much of the bulk of the cell as possible, especially at high magnitude fields. This behaviour
is apparent from the results presented in figures 3, 4 and 7 where it is evident that for high
magnitude fields the solution φ(x) is almost constant across most of the central part of the
sample. These constant states can be identified by considering the idealized case of an infinite
sample: they are the minima of welec in (2.6) as a function of φ. These constant equilibrium
states have been considered in detail by Stewart and Momoniat [16] in cases corresponding to
α � 0 and by Anderson and Stewart [6] when α = 0.

It is worth noting that the techniques employed here may be capable of being adapted to
those for a sample of SmC∗ liquid crystal in which the smectic layers are themselves tilted
relative to the boundary plates while the electric field is not tilted to the plates, a situation that
has been considered previously by Schiller et al [25] in the context of domain walls moving
parallel to the plates. Related work on tilted layers of SmC∗ may also be found in the articles
by Abdulhalim et al [8, 9].

Throughout this paper it has been assumed that flow, particularly backflow (see [4] for
details), can be neglected, an assumption that is feasible because the field is neither suddenly
switched on nor switched off. This is common practice in simplified versions of theoretical
work in liquid crystals and it would be natural to extend our investigation by seeking solutions
to this problem when flow is present using the dynamic theory for smectics [11, 4], especially
when a high magnitude field is suddenly switched off. Some related preliminary work on
relaxation incorporating flow as the electric field is switched off has been reported [26] for
SmC in the bookshelf geometry with the differing boundary conditions (2.28) and it is expected
that work on SmC∗ may proceed in a similar manner. Backflow for SmC in the bookshelf
geometry with φ = 0 at both boundaries has been investigated in detail by Blake and Leslie
[27] while Blake et al [28] have examined backflow for SmC∗ in the bookshelf geometry for
symmetric and asymmetric boundary conditions. For a more extensive physical discussion
of backflow for SmC∗ in the bookshelf geometry, and some examples of numerical solutions,
the reader should consult the work by Zhong Zou et al [29]. The work in this paper should
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lend motivation for further more intricate investigations into the influence of backflow upon
director reorientation in SmC∗, a topic that will be of interest to the modelling of switching
in SmC∗ displays, especially since it is known that backflow can, in certain geometries, be
significantly influential in the switching process of nematic liquid crystal displays [4, 30–32].
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